Publicaciones

Synthetic Hybrid Broadband Seismograms Based on InSAR Coseismic Displacements

Journal

Bulletin of the Seismological Society of America

Institución

Pontificia Universidad Católica de Chile

Disciplina

Ingeniería Civil

afiliacion

  1. Catalina Fortuño, cpfortun@puc.cl, Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile
  2. Juan Carlos de la Llera, jcllera@ing.puc.cl, Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile
  3. Charles W. Wicks, cwicks@usgs.gov, U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025
  4. José A. Abell, jaabell@miuandes.cl, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, 7550000 Las Condes, Santiago, Chile

Abstract

Conventional acceleration records do not properly account for the observed coseismic ground displacements, thus leading to an inaccurate definition of the seismic demand needed for the design of flexible (long period) structures. Large coseismic displacements observed during the 27 February 2010 Maule earthquake suggest that this effect should be included in the design of flexible structures by modifying the design ground motions and spectra considered. Consequently, Green’s functions are used herein to compute synthetic low‐frequency seismograms that are consistent with the coseismic displacement field obtained from interferometry using synthetic aperture radar (SAR) images. In this case, the coseismic displacement field was determined by interfering twenty SAR images of the Advanced Land Observation Satellite (ALOS)/PALSAR satellite taken between 12 October 2007 and 28 May 2010. These images cover the region affected by the 2010 Mw 8.8 Maule earthquake. Synthetic broadband seismograms are built by superimposing the low‐pass filtered synthetic low‐frequency seismograms with high‐frequency strong‐motion data. The broadband seismograms generated are then consistent with the coseismic displacement field and the high‐frequency content of the earthquake. A sensitivity analysis is performed using three different fault and slip parameters, the rupture velocity, the corner frequency, and the slip rise time. Results show that the optimal corner frequency of the low‐pass filter fc=1/Tc, leads to a trade‐off between acceleration and displacement accuracy. Furthermore, spectral response for long periods, say T≥8  s, is relatively insensitive to the value of Tc, whereas shorter periods are strongly dependent on both the slip rise time and Tc. In general, larger displacements consistent with coseismic data are obtained using this technique instead of digitally processing the acceleration ground‐motion records.

Link

Ver publicación